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Abstract: Robot trajectories used for learning end-to-end robot policies typically1

contain end-effector and gripper position, workspace images, and language. Poli-2

cies learned from such trajectories are unsuitable for delicate grasping, which re-3

quire tightly coupled and precise gripper force and gripper position. We collect4

and make publically available 130 trajectories with force feedback of successful5

grasps on 30 unique objects. Our current-based method for sensing force, al-6

beit noisy, is gripper-agnostic and requires no additional hardware. We train and7

evaluate two diffusion policies: one with (forceful) the collected force feedback8

and one without (position-only). We find that forceful policies are superior to9

position-only policies for delicate grasping and are able to generalize to unseen10

delicate objects, while reducing grasp policy latency by near 4x, relative to LLM-11

based methods. With our promising results on limited data, we hope to signal12

to others to consider investing in collecting force and other such tactile informa-13

tion in new datasets, enabling more robust, contact-rich manipulation in future14

robot foundation models. Our data, code, models, and videos are viewable at15

https://justaddforce.github.io/.16

1 Introduction17

Robot foundation models [1, 2, 3, 4, 5, 6, 7] leverage large-scale datasets spanning diverse objects,18

scenes, and embodiments to produce generalizable, cross-platform robot policies. The utilized data19

adheres to limited modalities: vision, language, and robot action–most typically, workspace camera20

view, text annotation of a given task, end-effector pose, and binary (open or closed) gripper position21

[2]. The latter, binary gripper position, especially without force feedback, precludes robot foun-22

dation models from successfully grasping many delicate objects such as soft produce, brittle dried23

goods, paper containers, and other such fragile and deformable items. In this paper, we propose24

a modification to this archetypal structure: continuous, rather than binary, gripper positions and25

corresponding grasp force feedback.26

We contribute 1) a novel dataset of 130 trajectories with continuous gripper position and force feed-27

back, spanning 30 unique objects ranging in deformability, volume, and mass (from 5g to 500g) and28

2) train diffusion policies [8] with and without force feedback, showing that force enables delicate29

grasping performant with state-of-the-art LLM-based methods at a near 4x reduced latency with30

promise for generalizability at greater data scale.31

Our position is that force, a strong supervisory signal of contact and grasp-success, along with32

continuous gripper position, rather than binary open or closed states, should be included in future33

datasets used in the training of robot foundation models. Our current-draw-based force sensing34

method is gripper-agnostic and requires no special hardware (“skin” or otherwise). While noisier35

and less accurate than bespoke solutions, policies trained on our data are capable of delicate grasps.36

Improved resolution and frequency of force and other tactile signals likely would further improve37

grasp fidelity and robustness.38
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Figure 1: We leverage LLM-directed expert demonstrations [9] of delicate objects to generate a dataset of 130
successful grasps of 30 different objects spanning a variety of physical properties. Our trajectories, unlike other
datasets used in end-to-end learning [2, 5], contain observed gripper applied and contact force and the action
of increased gripper applied force. We train diffusion policies [8] on the dataset with and without force data
and observe that forceful policies can, despite limited data, replicate trained behavior and generalize to unseen
delicate objects at 4x reduced latency relative to LLM-policies, and position-only policies cannot.

2 Related Work39

Large-scale robotic datasets [2, 5] have enabled the emergence of generalist, end-to-end robot foun-40

dation models [1, 2, 3, 4, 6, 7] which typically append a behavior cloning architecture [10, 11, 12, 8]41

to generate robot policies from a larger representation space. However, these robot foundation mod-42

els are pre-trained on limited modalities: vision, language, and robot joint and/or end effector data.43

There is a growing field exploring new modalities for end-to-end robot policy models, primarily in44

audio and tactile sensing [13, 14, 15]. Such policies offer novel advantages in contact-rich manipu-45

lation and manipulation in visually occluded scenes but require new complexities, namely: custom46

and/or nontrivially emulated hardware and increased model complexity in processing and incorpo-47

ration of high-dimension input data. In comparison, manipulator applied force and contact normal48

force can be approximated as 1-dimensional. And while traditional force sensing is costly relative49

to audio and touch and thus unused in end-to-end learning, we leverage current draw as a gripper-50

agnostic force measurement, without additional sensing hardware, using a MAGPIE gripper [9, 16]51

which interfaces with its motor control board to more easily provide this information.52

In this work we examine grasping of delicate and deformable objects, which has primarily been53

done via adaptive grasping methods with traditional closed-loop control or LLM-based robot con-54

trol: [9, 17, 18, 19, 20]. Traditional controllers are not as generalizable as methods leveraging large55

amounts of data [9], such as LLM-based methods, which in turn are high latency and computation-56

ally expensive. Utilizing force feedback from expert demonstrations of adaptive grasping in training57

or fine-tuning of robot foundation models may yield both lower latency and high generalizability.58

3 Methods59

We introduce a dataset of 130 successful adaptive grasp trajectories across 30 unique objects span-60

ning two orders of magnitude in mass (1g to 500g) and variable deformability (additional dataset61

detail and download link in A.1 and A.3). Data is collected at 5 Hz from a MAGPIE gripper [16]62

on a UR5 robot arm with a wrist-mounted Realsense D405 camera and a Realsense D435 camera63

overlooking a square, 55cm table. The user also provides a task instruction. The robot is positioned64

arbitrarily above and in-front of the target object, and the target object is placed arbitrarily on the65

table. We make our dataset publically available in an RLDS format [21] compatible with Open-X66

and Droid datasets, Octo models, and other foundation models trained on RLDS format data.67

To collect expert demonstrations, we employ DeliGrasp [9], which navigates to the object and68

queries the LLM with the user-provided object description and uses LLM-estimated object mass,69

friction coefficient, and spring constants as parameters in a proportional controller which increases70

applied force and gripper closure until a measured contact force [17, 18]. We command applied force71

by incrementing motor torque limit on a Dynamixel motor (an equivalent actuator-agnostic approach72

would be to increase supply current), and we measure contact force from increased current draw.73

We “distill” these expert demonstrations [22] by training four diffusion policies [5, 8] on this data,74

with and without (position-only) force, and with the entire trajectory or the grasp only (GO) (training75
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details in A.2). Initial testing showed that full trajectory policies did not learn meaningful robot76

motion, potentially due to the low amounts of data and each (robot start, target object) position pair77

being unique. Henceforth, we refer only to the policies trained on grasp-only data. By default,78

position-only policies apply a constant 2N and forceful policies begin at the lowest setting, 0.15N.79

In our experiments we localize the object and position the robot at a viable grasp position using80

[9] and deploy and evaluate the policies only during the stationary grasp portion of a trajectory. We81

manually qualify deformation failures on a per-object common-sense basis (object crushed, cracked,82

etc...) and check for slip by raising the robot gripper directly vertically by 10cm. As the average83

adaptive grasp in the dataset completes in under 10 steps, for one “grasp” we rollout the policy for84

15 steps at 4Hz (3.75s per grasp vs 14.11s for an LLM-based grasp [9], a 3.76x reduction).85

4 Experiments86

We conduct 10 trials of grasps on 10 different objects: four objects seen in the training set (empty87

paper cup, raspberry, tomato, paper cup filled with water) but assessed to be difficult objects and six88

unseen objects (blackberry, egg, empty metal can, empty soft-shelled taco, pepper, potato chip). We89

compare between two models: 1) position-only policies (PO) with the canonical gripper position90

input and output and image & task instruction inputs, and 2) forceful policies with applied force and91

contact force as additional inputs and applied force as an additional output.

Figure 2: We conduct a series of 10 trials for a selection of 10 objects; four seen in training, six unseen. Forceful
policies (82%) replicate seen grasps (85%) and generalize to similar but unseen objects (80%). position-only
policies (54%) retain a level of performance on seen (45%) and improve on unseen (60%) delicate objects,
suggesting that continuous gripper position control alone contributes to successful delicate grasps. We note
that position-only policy failures are generally deforming and compress more than forceful policies (see Fig. 3)

92

Across all objects, we find that forceful policies (82% success) are superior to position-only policies93

(54% success) (Fig. 2) and that position-only policies compress more than forceful policies (Fig.94

3). Position-only policies are still capable, perhaps because they are artifacts of forceful adaptive95

grasping, just trained without the force feedback, and the control law may be implicitly learned96

through solely vision, gripper position, and task instruction. Forceful policies generalize to unseen97

objects (80% success, compared to 85% for seen objects) and withhheld policies improve (60%, up98

from 45%), potentially due to relatively stiff objects like the egg and potato chip being forgiving for99

additional compression.100

More granularly, we qualify failures as either deformation or slip. While both policies generally101

perform deformation failures, forceful policies slip (7 occurrences) more than position-only policies102

(3 occurrences), representing a 28% vs. 6.1% share of respective policy failures. For produce like103

tomatoes and peppers, position-only policies generate grasps which are individually successful, but104

we observe that after 10 trials, the produce is noticeably deformed (“mushy”) due to repeated greater105

compression, unlike for forceful policies (Fig. 3). We leave these grasps marked as successes as the106

produce threshold of desirability is dependent on the end-user.107

Additionally, both policies occasionally generate generated grasps end several mm, up to several108

cm, offset from the object. We note these occurrences as “null grasps,” separate from successes or109
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failures. We note that the forceful policies produced null grasps 11.5% of the time (13 occurrences,110

even across seen and unseen grasps) and position-only policies produced null grasps 20% of the111

time (25 occurrences with 6 on the raspberry and 5 on the blackberry). We also observe volatility,112

though much rarer, in gripper position and force post-contact, resulting in abrupt crushes (notably113

affecting the average applied force on the raspberry in Fig. 3).114

Figure 3: We plot 1) forceful policies gripper position (blue), applied force (green dash), and contact force
(purple dash) and 2) position-only policies gripper position (red) against time, with additional plots in A.4.
Uniformly, position-only policies close more narrowly than forceful policies, leading to deformation failures,
particularly for delicate objects like blackberries and raspberries. Individual position-only policy grasps on
produce like tomatoes and peppers are successful, but we observe that after 10 trials, the produce is noticeably
deformed due to greater compression, unlike for forceful grasps. On objects like the pepper, empty taco,
blackberry, and tomato, applied force flattens as contact force increases.

In Fig. 3, we depict per-object grasp trajectories and forces and observe that position-only policies115

uniformly compress more than forceful policies. position-only policies are initially more aggressive116

in closing the gripper and often continue aggressive closure past contact, resulting in deformation117

failures. Forceful policies flatten applied force as contact force increases for some objects (pepper,118

empty taco, blackberry, tomato), showing vestiges of the proportional control law used in expert119

demonstrations, however, policies still apply more force than is typically needed and have not fully120

learned the control characteristics. Additionally, while objects span a large range of gripper position121

(5 to 65mm), final applied force lies in a smaller range (1.1N to 2.3N).122

5 Conclusion123

We add force observations and actions to the common data structure of imagery, task instruction,124

robot pose, gripper position used in training end-to-end robot policy models in a dataset of 130125

grasps across 30 objects. We train a diffusion policy trained on force feedback which outperforms126

a policy trained without force on delicate objects and generalizes to unseen objects, indicating that127

force may be a worthwhile inclusion in future data collection endeavors.128

Limitations and Future Work: As the second derivative of gripper position, force may encode129

enough information to be all you need for manipulation. Our models are currently only evaluated130

at rest, and we do not explore adaptive grasping while in motion. Moreover, our evaluated models131

are simplistic and trained on a toy dataset—future work includes finetuning on foundation models132

which allow new modalities [3] or collecting diverse, large scale data with force feedback. Adaptive133

grasping may also benefit from a pretrained LLM backbone to leverage common-sense reasoning134

about forces. Force also has applications beyond our demonstrated use case of slip/contact sensing135

and may be used for generating non-prehensile manipulation trajectories.136
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A Appendix247

A.1 Dataset Details248

Objects: orange bottle, peeled garlic clove, stuffed animal, garlic clove, green block, tomato, red249

screwdriver handle, scallion stalk, small avocado, yellow ducky, water bottle, small black motor,250

empty paper cup, circuit board, red button, scalion stalk, orange noodle bag, yellow block, straw-251

berry, bottle cap, small suction cup, light green chip, ziptie bag, metal lock, cardboard box, rasp-252

berry, large bearing, paper cup with water, small red green apple, paper airplane, green circuit board,253

plastic bottle, cherry tomato, mushroom, garlic bulb.254

For most objects collect 5-7 trajectories, with a few one-offs. We use a webapp console to interop-255

erate between DeliGrasp, robot control, and diffusion policy evaluation.

256

A.2 Diffusion Policy Training257

We train our models using DROID Policy Learning [5], which deviates from the vanilla implemen-258

tations in three ways: 1) opting out of SparseSoftmax to retrieve regional keypoints, instead keeping259

the feature channels of the image embedding, 2) adding language conditioning by encoding task260

instruction and adding it to the observation input, and 3) downsizing the input dimension to a fixed261

size. We do not alter the DROID hyperparameters except for the following: we train for 3000 steps262

(30 epochs) and a batch size of 16. Model training is done locally on a 2070 Super, taking approxi-263

mately 1 hour to train per model. We use To, Ta, Tp of 2, 8, and 16, but in evaluation use receding264

horizon control (Ta = 1).265
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A.3 Data and Model Downloads266

1. https://justaddforce.github.io/datasets267

2. https://justaddforce.github.io/models268

A.4 Additional Unseen Plots269
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